Cell mixing between the embryonic midbrain and hindbrain

نویسندگان

  • Stefan Jungbluth
  • Camilla Larsen
  • Andrea Wizenmann
  • Andrew Lumsden
چکیده

Segmentation is a mechanism that controls spatial organization along the anteroposterior axis of the neural tube and is particularly well characterized for the hindbrain region [1]. The generation of distinct and regionally specific structures from each rhombomere is achieved with the almost complete absence of cell mixing between neighboring rhombomeres [2, 3]. Here, we have examined cell mingling at the isthmus, where Otx2-expressing midbrain cells abut Gbx2-expressing hindbrain cells [4]. The sharp line of demarcation between the two expression domains suggests that this interface would be a compartment boundary, with no intermixing of cells, but this has not been directly tested. We have used short-term reaggregation assays to compare the adhesive properties of cells derived from midbrain and anterior hindbrain and cell labeling in vivo directly to monitor cell behavior at the midbrain/hindbrain boundary. Interestingly, our data demonstrate that, in contrast to the rhombomeres, differential adhesion does not seem to operate between the midbrain and anterior hindbrain and that cells move between the two territories. We conclude that these two subdivisions are not maintained by cell lineage restriction but by cells maintaining labile fates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Formation and Function of the Brain Ventricular System

The brain ventricular system is composed of a highly conserved set of cavities that contain cerebrospinal fluid (CSF), a protein-rich fluid essential for brain function. However, little is known about the function of embryonic CSF (eCSF), or the mechanisms of CSF production, retention, and circulation that regulate brain ventricle shape and size. Here we present data that begins to dissect the ...

متن کامل

Fate mapping of the mouse midbrain–hindbrain constriction using a site-specific recombination system

The mouse midbrain-hindbrain constriction is centrally involved in patterning of the midbrain and anterior hindbrain (cerebellum), as revealed by recent genetic studies using mice and embryological studies in chick (reviewed in [1,2]). This region can act as an organizer region to induce midbrain and cerebellar development. Genes such as Engrailed-1, Pax-2 and Pax-5, which are expressed in the ...

متن کامل

Temporal Expression of Wnt1 Defines the Competency State and Terminal Identity of Progenitors in the Developing Cochlear Nucleus and Inferior Colliculus

The auditory system contains a diverse array of interconnected anatomical structures that mediate the perception of sound. The cochlear nucleus of the hindbrain serves as the initial site of convergence for auditory stimuli, while the inferior colliculus of the midbrain serves as an integration and relay station for all ascending auditory information. We used Genetic Inducible Fate Mapping (GIF...

متن کامل

bHLH transcription factor Her5 links patterning to regional inhibition of neurogenesis at the midbrain-hindbrain boundary.

The midbrain-hindbrain (MH) domain of the vertebrate embryonic neural plate displays a stereotypical profile of neuronal differentiation, organized around a neuron-free zone ('intervening zone', IZ) at the midbrain-hindbrain boundary (MHB). The mechanisms establishing this early pattern of neurogenesis are unknown. We demonstrate that the MHB is globally refractory to neurogenesis, and that for...

متن کامل

[Frontiers in Bioscience 9, 93-99, January 1, 2004] 93 SYSTEMATIC IDENTIFICATION OF FACTORS IN ZEBRAFISH REGULATING THE EARLY MIDBRAIN AND CEREBELLAR DEVELOPMENT BY ODERED DIFFERENTIAL DISPLAY AND CAGED mRNA TECHNOLOGY

1. Abstract 2. The reciprocal interaction between the midbrain and midbrain-hindbrain boundary 3. Role of Islet-3 in the MHB development in embryonic zebrafish 4. Identification of downstream target genes of Islet-3 using Odered Differential Display 5. Development of caged mRNA technology for accessing the functions of downstream target genes 6. Combined use of caged mRNA technology and gene kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001